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ABSTRACT

}.

]

The problem of valuation for contingent claims that can be exercised at

any time before maturity, such as American options, is discussed in the manner

%

of Bensoussan [l]. We offer an approach which both simplifies and extends the
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results of the existing theory on this topic.
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1. Introduction

/ /

In an important and relatively recent article [1l], A. Bensoussan presents
a rigorous treatment of the pricing problem for contingent claims that can be
exercised at any time before maturity. He adapts to this situation the Black
& Scholes [3]§methodology of duplicating the cash flow from such a claim by
managing skillfully a self-financing portfolio that contains only the basic in-
struments of the market, i.e., the stocks and the bond, and that entails no ar-
bitrage opportunities before exercise. Under a condition on the market model
called completeness (due to Harrison & Pliska [7],[8] in its full generality
and r;ndered more transpaf;;t in [l]),*hensoussan shows that the valuation of
such claims is indeed possible and characterizes the exercise time in terms of
an appropriate optimal stopping problem. ’

In the study of the latter, Bensoussan employs the so-called "zenaliza-
tion method,"‘which forces rather stringent boundedness and regularity condi-
tions on the payoff from the contingent claim. Such conditions are not satis-
fied, however, by the prototypical examples of such claims, i.e., American
call options.

The aim of thelp;esent paper is to offer an alternative methodologyv on
this problem, which is actually simpler and manages to remove the above re-
strictions. Furthermore, it seems to be well-suited to the handling of claims
that are perpetual, i.e., exercisable at any time before the end of the age.

We present a suitably modified version of the Bensoussan model in sec-
tions 2 and 3. The analysis is carried out in section 4, culminating with the

valuation formulae (4.8), (4.9). Some elementary consequences of those formu-

lae are discussed. We take up the "perpetual case in section 5.
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N 2. The market model

s

' Let us consider a market in which n+1 assets (or "securities") are

> traded continuously. One of them, called the bond, has a price X(o) which

q evolves according to the equation

1

(2.1) dxiO) . r x@ge, x(()O) -1

{ with interest rate process {rt; 0sS t<w}, and determines the discount factor
38
» A 1 t
(2.2) B = = exp{~[r ds}; Ost <=,
t (0) s
Xt 0

The remaining n assets, called the stocks, are risky; their prices are modelled

A ’Zﬁ. . I-l'

by the linear stochastic differential equations

X d .
v dx(i) = [ai(t) -u(t)]X(i)dt + x(i) y o] (t)dW(J), O0st<o, 1gsi<n
% . t t 0% t
(2.3)
“: (i) = .
Xo xi> 0
: with random appreciation rates {ai(t); 0st <o} and dividend rates {u(t);0s t <=}

. i
(payable to stockholders). The discounted prices ax(l) of the stocks obey the

equations
A .
v (1) (1) (3
(4 A = - - . i
- (2.4) d(B.X."") = B.X T la () -1 P(t)}dt+ 'Z cij(:)dwt ]; 0st<w, 1<i<n,
" i j=1
]
Here, the process W = {Wt = (wil),..., wid) *,FS; 0<t<o} is a standard, d-
dimensional Brownian motion on the space (Q,F:,P). We shall denote by {Ft}
) the augmentation under P of the filtration
. w
(2.5) Ft-o(ws; OD<sst), Dstce
A
2 generated by the Brownian motion; it is well-known (e.g. [10}, section 2.7)
0
S that {Ft} satisfies the usual conditions of right-continuity and completeness
W
by the P-null events in Fm. One can think of the integer d as representing
O
Cd
rd
'
Yy
o




the number of independent, exogeneous sources of uncertainty in the market

model. We shall assume that
the processes {rt; 0sSt<w}, {ai(t); 0sSt<w}, {oij(t); 0<t<m}
(2.6) and {u(t); O0st <™} are progressively measurable with respect to

) i
{F‘:} and uniformly bounded in absolute value by a constant C> 0,

Let us consider now the random matrices

15150’ D(t) = o(t)o*(r), H(c) = g*(t)g(t)

1sj<d

o(t) = {°1j(‘)}

and the random vector a(t) - rtl with components ai(t) - l1£ign, 0st<o,

2.1 Definition: We shall say that the market model (2.1), (2.3) is complete

if there exist positive numbers €,6 such that

n

(2.7) ) Z D (t,w)EiEk 2 E“EHZ, for all £€ R"
ie]l k=1 - h
¢ d 2 d
(2.8) ) Hyp(t,w)tt,2 §llz]l®, for all ze R
j=1 £=1 >
hold for every (t,w) e [0,°) x§. G

Condition (2.7) will be needed below in the construction of the auxiliary
probability measure P, and condition (2.8) in the construction of a "hedging
portfolio" (section 4). In particular, (2.7) and (2.8) imply n=d, i.e., that

there exist exactly as many stocks as independent sources of uncertainty in

the model. Under completeness, the matrix Q(t,w) is invertible for every pair

{t,w) and the Rd-valued process

, (2.9 8() & oxop ()0 -7, 1), P o<t

has components which are progressively measurable, uniformly bounded by a
constant C> 0, and satisfy
d

(2.10) jzloij(t)ej(t) =a(t)-r; 0st<o, lsisn

e ww
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everywhere. But then

d . t
(2.11)  z_ = exp{- }8 ()aw'?) - W [lles)||%as}, F; 0<t<ew
t j=1j s 0 ~ t

is a martingale under P, and the Girsanov theorem guarantees the existence

i W
of a new probability measure P on (Q,F ) which satifies .

~ \)
(2.12) P(F) = E[ZTlF]’ for all Fe FT

for every 0<T<; under this measure, the process .
A t W -
(2.13) B =W + f8(s)ds, F'; 0<t<w
~t ~t 0-. t

is a standard Brownian motion inimd(see [9], pp. 176-180 or [10], section 3.5).

Furthermore, for every fixed,finite T >0, the probability measure

p A :
(2.14)  P(F) = Elz1.]; FeF,

g W
agrees with P on FT’ is mutually absolutely continuous with respect to P on

FT, and

(2.15) {Bt,Ft; 0<t<T} is Brownian motion under PT.

Under this measure, (2.3) and (2.4) can be written , respectively, as

%y e # TV

(3),

(2.16) dXt = (rt- L.J(t))Xt ¢ t

i 3

(1) (i)dt + X(i) '}q O0st<T

o..(t)dB
1 Y

d

21 a@xy =8 x (] cij(t)dBéj) - u(t)dt]; 0<ts<T.
j=1 i

2.2 Remark: It is seen from (2.17) that the discounted price process s
{BtXii),Ft; 0<t<T}, for a stock which pavs no dividends, is a martingale
under the measure ET' In fact, 5 was constructed with an eye towards this
properiy; see Harrison & Pliska [7],[{8] for an amplification of this point.

The existence of a probability measure under which the discounted prices be-

come martingales plays a central role in the theory of continuous trading




T

———

'y

TRV,

A

-,rr 4’_.-....‘..._4‘.<.r e e e a et e m e e .. -~

.-.-_.‘- e e - e e
..*'~ .".- " e '.'. RN '. ‘.-.-_-

'. % . R “ -\ [T
TN ( O AR : SOOI -
mi‘;._m.s Ialat s. VLSRR SO GRR e e -‘*.(l TR L{l‘.'_‘.r: O, '.'.'.

developed by these authors.

More generally, if the dividend rate process U is nonnegative, then the

. i -
(1) is a supermartingale under P _. 0

discounted price process BX T

Let us denote now by {Mt} the augmentation of the filtration {FZ} under

~

P, and define

~ A .
(2.18) Ft = Mt+ = EQOMC"'E’ 0t <o,

This new filtration satisfies obviously the usual conditions for P, and it is
rnot hard to see that

(2.19) {Bt,?t; 0<t<w)} is a standard Brownian motion under P.

Indeed, we only have to verify that, for every fe¢ cg(md), the process

£ A 1t
M= £(B) - £(B)) - 5~£Af(§s)ds; 0st<w

is an {Ft}-—martingale under P. We know from (2.13) that it is an {F‘:}-
martingale; thus, with 0<s< s+%< t <o, there exists for everv given

Fe M L @n event G« Fw such that f’(Gi\.F) = (0, and
s+a S

-

- £ ~ f f
(2.20) E[(Mt - M l)1F1 = E[(Mt - Ms+£)lGJ = 0.

By taking Fe MS+ = ?s and then letting n—+« in (2.20), we obtain

E[(Mi - Mi)lF] = 0, and therefore (2.19) as well.

2.3 Remark: All the processes under consideration are adapted to {?t}’ and

the equations (2.16), (2.17) are valid for 0st <= on (Q,?"m,f’).
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3. Contingent claims and equivalent portfolios

In order to fix ideas, let us take d=n=1 in the market model of the
previous section, and suppose that at time t =0 we sign a contract which
gives us the option to buy, at any time T between t =0 and an "expiration

date" t =T, one share of the stock at a specified price of c dollars (the

(1)

n of the stock is below the

. . . , 1
exercise price at t=T, the contract is worthless to us; but if Xg )> c, we

contractual "exercise price"). If the price X

can exercise our option (i.e., to buy one share at the preassigned price c¢)
and then sell the share immediately in the market, thus making a net profit

1 + . : .
f )- c) dollars. Because clairvoyance has to be excluded, T is restricted

of (X
to be a stopping time of {Ft} with values in [0,T].

Such a contract is commonly called an American option, in contradistinc-

tion to "European options' which allow exercise only on the expiration date,
i.e., T=T. Both European and American options are financial instruments and
can be traded on their own right (e.g. at the Chicago Board Options Exchange
and other organized secondarv markets for options).

Two related questions can be raised for such instruments:
(3.1) (i) When should an American option be exercised, if at all?

(3.1) (ii) How much should one be willing to pay at t=0 for the right to

sign the abovementioned contract?
We shall see that the kev to answering both these questions comes in the

form of an appropriate optimal stopping problem. The following definition

generalizes the concept of American option; we denote bv S . the collection

of all stopping times T of {Ft} with values in [u,v], for fixed Osu~v < x,
*

and write S S , S = S .
t t,® t a=1t,t+n

ne>

o0
U
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3.1 Definition: An American contingent claim (ACC) is a financial instru-

ment specified by
(1) an expiration date Te (0,%],
(ii) the selection of an exercise time Te¢ SO T

(iii) a payoff rate gt per unit time on (0,7), and

(iv) a terminal pavoff f_ at the exercise time.

The processes F = {ft’FS; 0<t<®} and G = {gt,Ff; 0<t<»} are nov-

negative, progressively measurable, and satify for some m>1:

T
(3.2) E[ sup f + fgtdt]m < o, for every fixed Te (0,x),
0<t<T 0

8]

Furthermore, F is assumed to have continuous paths.

3.2 Remark: An ACC with expiration date T=% is referred to as perpetual;

in this case, (iv) above is to be understood with the convention

e~

f () = lim £ (), we S,

t-'bm
3.3 Example: An American option is a special case of an ACC with n=d=1,

Xil) -c)+. The number ¢ 20 is called the exercise price of

Z0 and £ _ =
8, ¢ = €
the option.

Let us suppose now that at time t =0 we sign a contract which entitles

us to an ACC. What is then the value Vt of this instrument to us, for

every 0<t<T? 1If we can answer this question, then we can also answer ques-

tion 3.1(ii) above: we should be willing to accept at t =0 a fee which is

proportional to \b.

problem, which has a long history (see Samuelson [14],[15], McKean [1l}, Van

This is the essence of the contingent claim valuation

Moerbeke [17] and the review article by Smith [16]). We shall approach here
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in the spirit of Merton [12], Harrison & Pliska [7],[8] and particularly
Bensoussan [l]. The fundamental idea, due to Black & Scholes {3] in the
setting of European options, is to try to duplicate the cash flow from an

ACC by skillfully managing a portfolio that contains shares from the basic

instruments of the market, i.e., the stocks and the bond.

3.4 Definition: A vector :={(r0(c),nl(c>,..., Tn(t)), Ft; 0<st<ox; of

measurable and adapted processes on (&,F) with

T
(3.3) o[~
0

n
”i(s)ds<°°] =1; 0<sT<w, 1i=0,1,.... n

is called a portfolio; its components represent the number of shares, from
each of the n+ 1 assets, that are to be held (if Wi(t)Z:O) or borrowed (if
*i(t)< 0) at time t. The quantity

(1)

t

(3.4) v o=

T, (t)X
. i
i

0

; O0stex

-1

)

is called the value of the portfolio at that time.

The question now is to choose the portfolio [ in such a wav as to imi-
tate the cash flow from the ACC; then Vt in (3.4) will represent not only
the value of the por:folin but also that of the contingent claim for 0-tsT.
For this to happen, we should have necessarily

(3.5) Vt;:ft; for all 0st<T

and, if T+ ~, alsc

(3-6) v = f

almost surely, because we always have the option of exercising our claim (and

PP

onlv this option if t=T<=), On the other hand, we want to build the port-

folio in such a wav that the total earnings (i.e., capital gains plus divident

pavments)
e e e e e e . PRSI
a " A Y AT e e N '.‘\ SR ' e ) " S ST '-J‘\. o e e
PP NP4 RER STV AL P PE PU PRI VAP N S IR




n t+h (1) n t+h (1)
Z f ﬂi(S)dXs ) / ‘"i(S)Xs u(s)ds
i=0 t i=l ¢t i

from it over any interval (t,t+h) should not fall below the potential earnings

t+h

- +
Vt+h Vt { gsds

that would result from the possession of the claim. This is the so-called

hedging property of the portfolic; we impose it by postulating that the process

A= E }? ()ax'P + rf }ﬂ (£)xPu(sras - v_ - }g ds + V
(3.7) { t j=p00* s i=1 0% S i t o°% 0

{

is a2lmost surely nondecreasing.

Finally, let us introduce for every te [0,T) the random time

. = . r > . V =
(3.8) ?t inf{s2rt; < fs}

and observe from (3.5), (3.6) that t=< ?ts T holds almost surely, if T<«, It

is certainly plausible that, if we can guarantee the stopping time property of

?t, this time will then be the best amongst all Te¢ S to exercise the claim.

t,T
Therefore, on the interval (t,?t) the situation is very much like that for a
European claim: the gains from the portfolio and the gains from the claim
should coincide, so that no arbitrage opportunities could exist. Equivalently,
the process A of (3.7) should be constant on this interval:

(3.9) AL = As
t

, almost surely.

We shall see in the next section that it is possible to construct a portfolio

with all these properties. The following technical notion and result will be

needed.

3.5 Definition: A measurable, adapted process {Yt, Ft; 0<t<®} is said to

be of

(i) class D, if the family {YT;Te SO} is uniformly integrable;

L

. .
.I " 'l ". 1 ‘. &%

P L
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.,j (ii) class D[0,T], for a given 0<T<w, if the family {YT;Te So T} is uni-
formly integrable;

: (iii) class DL, if it is of class D[0,T) for every 0< T <,
.
"
:), 3.6 Lemma: The progressively measurable process
. A t w
. . = + 2 0<
: (3.10) Q, = .8, (f)gsesds, Fos 0Stce
- is of class DL under P.
-
:- Proof: With p é va > 1 é c (max f +ng ds) we have from (2.12)
o —_— ’KI 0<t<T "t 0°s

and the Holder inequality:
Ny
& (3.11)  E( max Q, P2 E®D) = ekPz) = (EK )l/p(zz yt/a
. T TT
. 0<t<T

where 1/p + 1/q = 1. Now (3.2) gives EK?<°°, and for anv g > 1 we can write
- d T T T -
ad - j l - r - i - S !
: zj = expl- ] fa5, (rawtd) 2 [lla5(s) |1 2asteexpi XL {15 (5 {1 2as?, X
- . b s 2 ~ 2 N
. i=1 0 0 0
N whence
N . .
~ £zd 2 exptiq(q—l)TCZJ < oo,
~ T 2
N

From (3.11) we obtain sup EQP < «, and the requisite uniform integrability
o ESO T
. tollows.

‘
+
.
»
-
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4. Claims with finite expiration date

X e

| OSSN

We broach now the question of valuating an ACC with T<e; all the pro-

cesses under consideration will be defined only on [0,T].

4.1 Definition: A portfolio Il is called a hedging portfolio against the ACC

if its value V is continuous, of class D[0,T], and satisfies (3.5), (3.6),

(3.7) and (3.9), under iT'

If such a portfolio exists, its value V is called a valuation process

for the ACC, and V0 is referred to as a value of the ACC at t =0 . o

Because of the continuity of both V and F, the random time ft of (3.8)
is indeed a stopping time of {Ft}. We shall show in Theorem 4.2 below that

a valuation process exists and is unique up to indistinguishabilitv.

. Let us start by assuming the existence of such a process ; recalling

(2.1), (2.16), (3.4) we can rewrite the process A of (3.7) in the equivalent

form
t n d t (1) (1)
(4.1) A =V, -V + (Vv -g)ds+ J T [n.()x o, (s)dBI’; 0T,
t 0 t s s s , . i s ij s
0 i=l j=1 0
We fix te {0,T), select a stopping time Te St T and define
(1) 72
(4.2) Tm = TAmAinf{s e [t,T]; Xs 2m or fﬂi(u)du >m, for some 1< i<n}
t
for m=1,2,.... The equations (2.2), (4.1) give
; k 2 g (i) ()
4. +V )-8 ) )= (8 -7 ;
(4.3) B (A +V)-~B_ (A +V_ ) [S(gs+rsAs)ds p '2 fesri<s)xs PO
Y m m m t i=1 j=1 ¢t
oo
v \ N\ .
ﬁ\ a.s. PT. But the non-decreasing nature of A implies in particular
b“\‘
»
T 1
m m
o (4.4) B_ A -8A +[rBAds=[B84dA 20,
K T T tt < "sss s s
:.._;‘ m m t t
-'\-(
::f which gives in conjunction with (4.3):
Ay
—— AN A O
R |




Ly

4.2 Theorem: Under the assumptions (2.6)-(2.8) and (3.2), there exists a

m nog m (1) (3)
(4.5) BV 2B V. + / B8 ds - .2 'z / m.(s)B X oij(s)st , a.s. P
m m t i=1l j=1 t

The conditional expectations (given Ft) of the stochastic integrals are equal
tec zero, and thus
T

m
(4.6) stvtth[evaTm + { B.g ds|F ], a.s. P

T
Now we may let m-—®; because of (3.3) we have limm*me==T, a.s. ?T’ and bv

the monotone convergence theorem, the membership of V in D[O,T], and (3.5),
we deduce

T
2 g |
(46.7) BV, ET[ETfT + {Hsgsds_Ft], a.s. PT

for every Te¢ St T On the other hand, with 1 =i}, all four of (4.4)-(4.7)

hold as jidentities, and thus

-D

t

BV, = ET[B%:fft + { B.gds|F 1, a.s. P .

continuous, adapted process V = {Vt,Ft; 0<t<T! which is a valuation process

for the ACC of Definition 3.1 and admits the representation

1 T s
= £ - [ _ ! F .S.
(4.8) Vt esssup ET[fTexp{ frsds}4-fgsexp{ jrudu,ds[ t]’ a.s PT
TeSt T t t t

for every fixed te [0,T]. Every other valuation process is a modification of

(and hence indistinguishable from) V. 1In particular,

1 - s
(4.9) v = sup E_[f_expi-[r ds} + [g exp{-[r dulds]. J
0 1eS T 0 ° 0 ° o"

0,T

The uniqueness claim has just been shown; for the existence, let us re-

call the process Q of (3.10) and consider the optimal stopping problem of

characterizing the function




(4.10) u(t) & sup ET(QT)o
TeSO T

R

This problem was treated by Fakeev [5] and Bismut & Skalli [2}; accord-

ing to the results of these papers, there exists a right-continuous supermart-

ingale £ = {Et,Ft; 0<t <®} such that

(4.11) u(t) = ET(ﬁt)

and

(4.12) Et = esssup ET(QTIFt), a.s. ?T
TeSt T

are valid for every te [0,T}. The process £ turns out to be the Snell envelope

of Q (i.e., the minimal right-continuous supermartingale which majorizes Q),

and the stopping time

A Foa
(4.13) o, = inf{s 2 t,gs Qs}e st’T

PV I I

is optimal for every given te {0,T]:

(4.14) u(t) = ET(Qot). .

Moreover, it was shown by Bismut & Skalli [2] that the supermartingale £ is

regular:

cS converging a.s. P, to a

oc
for every sequence {0
- y sequence {0} , =S T

(4.15) {

>0

stopping time O ¢ St,T’ we have lim ET(gcn)= ET(QO). :

4.3 Lemma: For every te [0,T], the process {ESAO ,Fs; t<s<T} is a martingale
t

under ?T.

The above process is a supermartingale, by the optional sampling

Proof:

theorem; it also has constant expectation, since

Bp(€y ) = Ey(Q, ) = ule) = Er(E)

(NN W S ARA
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by virtue of (4.11), (4.14). The martingale property follows.
4.4 Lemma: The supermartingale £ of (4.12) is of class D{0,T] under PT'

Proof: We proceed as in the proof of Lemma 3.6; if {mt; 0st<T} is a right-
continuous modification of the martingale {ET(KT|FC); 0<t<T} and A & %,

the Doob, Holder and Jensen inequalities give

Py S 1 Py S . p P
(02227 mt) AfT(mT) AET(Kr).

E (sup EP) = F
T 0<t<T t T

The remainder of the proof follows that of Lemma 3.6,

.3

Now Lemma 4.4 and regularity (condition (4.15)) show that ¢ admits the
Doob-Meyer decomposition (cf. [13], Chapter VII)
(4.16) E=M-A
where A= {At’Ft; 0<t<T} is a continuous, nondecreasing process with ET(AT) <o
and M= {Mt’Ft; 0<t<T} is a right-continuous version of the PT—martingale
{ET(MTIFt); 0<t<T} with MTQ‘QT-O-AT. The Bayes rule gives
!
ET(MTIFt) = EM%—ZJ—I-FC—) = %, a.s. P
t t
where {Nt,Ft; 0<t<T} is a right-continuous version of the P-martingale
{E(MTZTIFt); O0<t<T}. This version can actually be taken as continuous,
since by the basic representation theorem ([9], p. 80 or [10], section 3.4)

we have

d t
- ’ (3),
(4.17) No= EQZ.) + jzl éq:j(s)dws ; 0<sts<T

a.s. PT’ for suitable measurable and adapted processes {¢j(t)’Ft; 0<t<T}

such that
1o

(4.18) P[f¢j(t)dt<°°] = 1; 1<jsd.
0
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It develops that the continuous process
(4.16)" L= 2

is indistinguishable from £; furthermore, from Lemma 4.3 and the uniqueness of
the Doob-Meyer decomposition, we have for every te [0,T]

(4.19) At

A, a.s. B
p

¢ T

It is also pretty obvious from (4.12) and the continuity of bothZ and Q,

that
(4.20) ctzqt, 0<t=<T
(4.21) CT = QT

hold a.s. PT.

Proof of Theorem 4.2: The process

(4.22) v 2

. -é— -fsgds)F ; 0St<T

is obviously adapted, continuous and of class D{0,T] (Lemma 4.4), and satis-
fies (4.8), (3.5), (3.6) thanks to (4.12), (4.20), (4.21); besides, the stopping
times ?t,ot of (3.8), (4.13) are a.s. equal.

On the other hand, a straightforward application of Itd's rule to (4.16)’

yields, in conjunction with (4.17) and (2.11),

- ()
(4.23) do =5 ) {cj(c) + Ntej(t)}dBt - dh
t j=1
and then we obtain from (4.22):
¢ ¢ x(© .
_ ) - fxO4p ;s pees
(4.24) Vt-Vo+£(r v gs)ds+jyl (f) . (¢>j(s)+N58j(s))st -OxS g OstsT

almost surely. But now, comparing (4.1) and (4.24), we conclude that 3.7

will be satisfied with the choice

. v e e -

- ¥y v W v

+




(4.25) x@4r s oseer,
- -]

provided that we select the portfolio Il in such a manner that

(1)

. (¢); OstsT, 1<j<d.

n
B.Z, ) m, ()X

= ¢, N 6
L oij(t) ¢J(t) + ¢

3

This can be accomplished (thanks to (2.8)) by introducing the R"- valued pro-

cess
(0

4.26)  n(0) & L= o(E (O [0(0) + NB(E)],F 5 0sEsT
t

and then setting

ni(t) .
X(i) ’
t

A n
1<is<n, ﬂo(t) B [v. -~ 7§ ni(t)]-

Al
(4.27) n (t) =
i v L

It is easily seen from (4.26), (4.18) that this ]| satisfies the integrability
condition (3.3). The continuous, nondecreasing process A of (4.25) obeys the

condition (3.9) because of (4.19), and the proof is complete.

4.5 Remark: Theorem 4.2 was established in [1l] under a regularity condition
on the process F and under the assumption that both processes F,G of Definition
3.1 are uniformly bounded. This condition is not satisfied, however, in the

prototypical case of an American option (Example 3.3).

Let us examine now some elementary consequences of Theorem 4.2.
4.6 Remark: Consider the case where the process {Qt’Ft; 0<tsT} of (3.10) is
a submartingale under PT (or equivalently, the process {Qtzt,Ft; 0<t<T} is a
submartingale under P). Then it is easily seen from (4.12) and the optional
sampling theorem that

it = ET(QTIFt), a.s. P, and u(t) = ET(QT)

T

hold for every 0st<T, i.e., ?t='T is optimal in (4.10). It develops that
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the valuation problem is the same, in this case, as that for a European con-

tingent claim:

T T s
(4.28) v, = ET[fTexp{-{rsds} + {gsexp{-{rudu}dlet], a.s. ?T.

For instance, in the case of Example 3.3 with rt 20, u(t) =0 and ¢ > 0,
1

the process

(1) _ cB )+

Qt = (tht t

is easily seen to be a submartingale under PT; cf. Remark 2.2. We recover a

result of Merton (1973) in the following form: an American option with posi-

tive exercise price, written on a stock which pays no dividends, should not

be exercised before the expiration date.

4.7 Remark: If the process {Qt’Ft; 0<t<T} is a supermartingale under ?T’

then £ =Q, u(t)=ET(Qt), ‘ft=t and (4.22), (3.10) give

(4.29) V= f.

Consider in this vein the situation in Example 3.3 with c¢=0, u(t) 20.
1

¥ o)

In

Then Q= BX is a supermartingale under PT’ and (4.29) gives V = X

other words, an American option with zero exercise price must sell for the

same amount as the stock.

Finally, in the case of Example 3.3 with u(t) 20, we have from Remark

1
2.2 and (4.8):
1 + 1
Btvt = esssup ET[BT(Xf’ )-c) lFt] < esssup ET[BTX,E )IFt] - tht(:l)
TeSt T 'reSt T

a.s. P_, i.e., VSX(l):

T the underlying stock is always at least as valuable

as the cption.

AT
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5. Perpetual claims

When it comes to studying perpetual ACC's (Remark 3.2) it becomes essen-
tial that the Brownian motion B of (2.13) be defined on the entire of [0,)
and be accompanied by a filtration which satisfies the usual conditions. As

such a filtration one could take the P-augmentation of
B
th(ﬂBQ O<s<t); O0<t<oo,

but this filtration will typically fail to measure the processes of (2.6).
On the other hand, we may choose the filtration {?t} of (2.18) for this pur-

pose. Indeed, we shall take ir this section (Q,?m,P), {?t}

as our basic probability space, and recall (2.19) as well as Remark 2.3.

- ry *
Similarly, the classes Su V’St’st introduced in section 3 will now consist of

’

stopping times of {Tt}. It will also be assumed that

(5.1) E( sup Qt) < o

O<t<w
holds, a condition which guarantees that the process Q of (3.10) is of class

D under B.

5.1 Definition: A vector Il= {(ﬂo(t),ﬂl(t),..., ™ (t)), ?t; 0<t <} of measura-
n

~

ble and adapted processes on (Q,Fw) with

T
2
(5.2) Pl/ri(t)dt <w] = 1; 0<T<o, 1i=0,1 n
01 b b $ oy

will be called a portfolio, and the process V= {Vt,?t; OD<t<w} of (3.4) the

value of the portfolio.

5.2 Definition: A portfolio Il is called a hedging portfolio against the per-

petual ACC if its value V is continuous and satisfies (3.5), (3.7), (3.9) as

well as

(5.3) 1lim BV, = lim B f_, a.s. P,
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and the discounted value BV = {Btvt’F ; 0<t<w) is of class D. If such a port-

t
i fnlio exists, its value is called a valuation process for the perpetual ACC,
and V0 is referred to as a value of the perpetual ACC at t=0. d

The condition (5.3) is, in a sense, an analogue of (3.6). For a generic

nonnegative process Y = {Yt,Ft; 0<t<x} we shall use the conventions

e e aVa"w"s

Y_(w £ Tim Y (w)

-0
N and EY = E[Y 1 Lco} * Y lfT w1] Proceeding as in section 4 (with T=< in

(4.2)) we can establish the following analogue of Theorem 4.Z.

5.3 Theorem: Under the assumptions (2.6)-(2.8) and (5.1), there exists

a valuation process V for the perpetual ACC, which admits the representation

(5.4) v, = esssup Elf expf fr ds} + fg*expi )r du}dle , a.s. P
reS t t t

for every fixed te [0,©). Every other valuation process is indistinguishable

A
from V, and
- (5.5) Vy = su E[fTexp*—:r ds} + fg expi{- fr dulds]. _
. TS 0 0
' The detailed development is omitted; as before, it uses the results of
. (51,(2] fortheoptimal stopping problem
g (5.6) u(t) £ sup B(Q ) = sup ﬁ(Q ).
; TeS T€S
" The Snell envelope for this problem, i.e., the minimal right-continuous super-
L]
: martingale £ = {ﬁt,Ft; 0 <t <w} which dominates Q, satisfies
(5.7) & = esssup E(Q |F ) = esssup E(O [F ), a.s. P
Y TeS TES
? for every 0<t <», and is now regular (i.e., (4.15) holds on everv finite

Cag T s L e AL v mlT w T M ot w~oa s - .-
e e .'_- ..."- ..,' '3‘-'-\ \~’." -‘ ----- R
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horizon [0,T]) and of class D under P. For the last claim, it is useful to
recall the strengthening of (5.7):

(5.8) io = es;sup E(Q IF ), a.s. P
Te

(e.g. [4], §2.15), wnich is valid for every oOc¢ SO and with So denoting the
class of all {?t}-stopping times that satisfy P[osT<®]=1. The stopping
time

(5.9) o=

t t

{inf{sz t; £s=Qs}} .
e S

o, if {...1}

is optimal for the problem (5.6): u(t)==E(QC ), and we have
t

(5.10) €, = Q. a-s. P.

On the other hand, the continuous, nondecreasing process h= {At’Ft; 0<t <o}
in the Doob-Meyer decomposition (4.16) is integrable, and the right-continuous
martingale M= {Mt,;’t; 0<t<w} is uniformly integrable and admits the (Fujisaki-
Kallianpur-Kunita) representation

it (),

(5.11) Mt = E(MO) + s)st 7 0<t<cw

~J‘
J=lO
as an almost surely continuous process. Here {¢j(t),Ft; 0<t <o} are measurable,

adapted processes with

T"ﬂ
(5.12) P[f¢5(t)dt<°°]=l; O0sT<x, 1<jsd;
0

see, for instance, [18], Theorem 5.20. Finally, the process

&

t
1, -
(5.13) v, ——5 (gt—f Ssgsds),Ft, 0<t <o

0
is easily seen to satisfy the tenets of Definition 5.2; it is the value of the

portfolio I determined by (4.27), where now

|H>

(5.14) rj( )

OB (D80, F 5 0:t<w.
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It is easily seen (using (5.12)) that this portfolio satisfies the requirement
(5.2) and that the optimal stopping time Ct for (5.6) coincides with %t of

(3.8).

5.4 The Markovian case: If the processes in (2.6) are equal to the constants

Uij,r,ai, » respectively, then the stock price process
i

X = (x(l),..., X(n))*

satisfies the system (2.3) of linear equations with constant coefficlents. 1If
furthermore, the processes F and G of Definition 3.1 are given as

= z0; <
ft ®(§t),gc 0; O<t<w

. . n o
for some continuous function ¢ :KS_*[O;”L then under the conditions of Theorem
4.2 the valuation process is obtained via

(5.15) v, = V(Xt); D<t<w, a,s. P

where v :nyf + [0,°) is the least r-excessive majorant of ¢ (see [6]).

5.5 Remark: In the case of Example 3.3 with le(t)-’7> 0, Q{t) z2u>0,

we nave
(L) s (D
Q =5 ) = 5X
where the last process satisfies (2.17). It follows easily from this equation
that
oYt
0< Qts xe ; 0<t<w
holds a.s. P, where Yt==Bél)-vt is Brownian motion with negative drift and
o=ty g But now the law
o 2
Pl sup Y cdb] = 2ve Pab; b>0

O<t<ee
is well-known, and the condition (5.1) follows from it; consequentlv, Theo-

rem 5.3 applies to such perpetual American options.

AT
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For an American option as above but with u(t) = 0 (i.e., on a stock which
pays no dividends) and with
(5.16) r, 20, lim ér ds = »; a.s. B,
t S
T

we shall agree that the valuation process is given by

(5.17

<
"

lim v_(u); O=st<x
, t
uv0

where V(u) is the valuation process under a constant divident rate, provided
that the limit in (5.17) exists almost surely. From the optional sampling

theorem we obtain

(1) > e 79 o v o
g X = esssup E(X_77f_:F 1 =2V (WF
tt Tés* T T t t t
t
= esssup E[(Xfl)-c)+ B E? ]
TeS* T Tt
Tt
; (l) +Q | T
= B[ -0 PT‘Ft]
> e x eI Lprs F g

tt T t

(1)

for every u >0, T>t. Letting v+ 0 and then T, we obtain Vt= Xt from

(5.17). 1In words, a perpetual American option on a stock which pavs nc divi-

dends, and in the presence of condition (5.16), must sell for the same amount

as the stock.
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If the perpetual option has zero exercise price, the same conclusion

holds without the restriction u(t) =0 (by analogy with Remark 4.7).
1

5.6 Example: 1In the Markovian case 5.4 withd=n=1, c=1, ¢(x)= (x-l)+,

the function v in (5.15) was computed by McKean [11l] as

2
with v = % (/6Z;2roz-5),a=r-u>0, 6=a-9— s |<---—Y——> 1, and the optimal

o 2 v-1
exercise time (5.9) becomes o, = inf{s2t; Xs 2Kk} e St' The finite-horizon

version of this problem was studied by Van Moerbeke [17], along with the

associated free boundary problem.
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